Elliptic Regions and Stable Solutions for Three-Phase Flow in Porous Media
نویسندگان
چکیده
In the limit of zero capillary pressure, solutions to the equations governing three-phase flow, obtained using common empirical relative permeability models, exhibit complex wavespeeds for certain saturation values (elliptic regions) that result in unstable and non-unique solutions. We analyze a simple but physically realizable pore-scale model: a bundle of cylindrical capillary tubes, to investigate whether the presence of these elliptic regions is an artifact of using unphysical relative permeabilities. Without gravity, the model does not yield elliptic regions unless the most non-wetting phase is the most viscous and the most wetting phase is the least viscous. With gravity, the model yields elliptic regions for any combination of viscosities, and these regions occupy a significant fraction of the saturation space. We then present converged, stable numerical solutions for onedimensional flow, which include capillary pressure. These demonstrate that, even when capillary forces are small relative to viscous forces, they have a significant effect on solutions which cross or enter the elliptic region. We conclude that elliptic regions can occur for a physically realizable model of a porous medium, and that capillary pressure should be included explicitly in three-phase numerical simulators to obtain stable, physically meaningful solutions which reproduce the correct sequence of saturation changes.
منابع مشابه
Free connective flow of a micropolar fluid a long an elliptic cylinder in porous media using the thermal non-equilibrium model
متن کامل
Numerical Simulation and Estimation of the Transvers Macrodispersivity Coefficient of Aqueous Phase (Miscible) Contaminants of Salt Water in a Heterogeneous and Homogeneous Porous Media
Deterioration of groundwater resources in coastal regions due to the progression of saline water in aquifers in these regions is currently one of the important issues in providing water needs in these areas. In coastal regions, saline water enters the aquifer from below in shape of wedge. Due to the difference in the density between fresh and salty water, an interface zone forms between two flu...
متن کاملInvestigation of pore-scale random porous media using lattice boltzmann method
The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...
متن کاملApplication of Homotopy Perturbation Method to Nonlinear Equations Describing Cocurrent and Countercurrent Imbibition in Fractured Porous Media
In oil industry, spontaneous imbibition is an important phenomenon in recovery from fractured reservoirs which can be defined as spontaneous uptake of a wetting fluid into a porous solid. Spontaneous imbibition involves both cocurrent and countercurrent flows. When a matrix block is partially covered by water, oil recovery is dominated by cocurrent imbibition i.e. the production of non wettin...
متن کاملA New Approach for Constructing Pore Network Model of Two Phase Flow in Porous Media
Development of pore network models for real porous media requires a detailed understanding of physical processes occurring on the microscopic scale and a complete description of porous media morphology. In this study, the microstructure of porous media has been represented by three dimensional networks of interconnected pores and throats which are designed by an object oriented approach. Af...
متن کامل